MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/11
Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	11

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\text {* implies that the A or B mark indicated is allowed for work correctly following }}$ on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through 凤" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	11

1	$\begin{aligned} & { }^{7} \mathrm{C}_{1} \times 2^{6} \times a(=)^{7} \mathrm{C}_{2} \times 2^{5} \times a^{2} \text { soi } \\ & a=\left(\frac{7 \times 2^{6}}{21 \times 2^{5}}\right)=\frac{2}{3} \quad \text { oe } \end{aligned}$	$\begin{aligned} & \text { B2, 1, } 0 \\ & \text { B1 } \\ & \end{aligned}$	Treat the same error in each expression as a single error
2	$\tan ^{-1}(3)=1.249 \text { or } 71.565^{\circ}$ $\sin 1.25$ or $\sin 71.6$ or 0.949 soi $(x=) 1.95$ cao, accept $1+\frac{3}{\sqrt{10}}$ oe	M1 M1 A1 [3]	Attempt at $\tan ^{-1} 3$ or right angle triangle with attempt at hypotenuse $=\sqrt{ } 10$ Attempt at $\sin \tan ^{-1} 3$ Answer only B3
3	$\begin{aligned} & 13 \sin ^{2} \theta+2 \cos \theta+\cos ^{2} \theta=4+2 \cos \theta \\ & 13 \sin ^{2} \theta+1-\sin ^{2} \theta=4 \rightarrow \sin ^{2} \theta=\frac{1}{4} \\ & \text { or } 13-13 \cos ^{2} \theta+\cos ^{2} \theta=4 \rightarrow \cos ^{2} \theta=\frac{3}{4} \\ & 30^{\circ}, 150^{\circ} \end{aligned}$	M1 M1 A1A1 ${ }^{\wedge}$ [4]	Attempt to multiply by $2+\cos \theta$ Use of $\mathrm{s}^{2}+\mathrm{c}^{2}$ appropriately SC both answers correct in radians, A1 only Ft on 180 - their first value of θ
$4 \quad$ (i) (ii)	$\begin{aligned} & 32-4 k=20 \Rightarrow k=3 \\ & 4 b+3 \times 2 b=20 \\ & b=2 \end{aligned}$ Mid-point $=(5,0)$	M1A1 M1 A1 [4] B1 ${ }^{\wedge}$ [1]	Sub $(8,-4) \quad[$ alt: $(2 b+4) /(b-8)=-4 / k$ $\operatorname{Sub}(b, 2 b), \quad 4 b+2 b k=20$ M1 both M1 solving A1, A1] Ft on their b
5	$\begin{aligned} & x^{2}+x(k-2)+(k-2)(=0) \\ & (k-2)^{2}-4(k-2)(>0) \text { soi } \\ & (k-2)(k-6)(>0) \\ & k<2 \text { or } k>6 \quad \text { (condone } \leqslant, \geqslant) \\ & \text { Allow }\{-\infty, 2\} \cup\{6, \infty\} \text { etc. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \text { A2 } \\ & \text { [5] } \end{aligned}$	Equate and move terms to one side of equ. Apply $b^{2}-4 a c(>0)$. Allow \geqslant at this stage. Attempt to factorise or solve or find 2 solns. SCA1 for 2,6 seen with wrong inequalities
6 (i) (ii)	$\begin{aligned} & \boldsymbol{A B} \text { or } \boldsymbol{B} \boldsymbol{A}= \pm[(7 \mathbf{i}-3 \mathbf{j}+\mathbf{k})-(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k})]= \\ & \pm(\mathbf{4} \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}) \\ & (\boldsymbol{A O} \boldsymbol{O} \boldsymbol{A} \boldsymbol{B})= \pm(12-10-2) \quad \text { [allow as column if total } \\ & \text { given }] \\ & =0 \quad \text { hence } O A B=90^{\circ} \\ & \|\boldsymbol{O A}\|=\sqrt{9+4+1}=\sqrt{14}, \\ & \|\boldsymbol{A B}\|=\sqrt{16+25+4}=\sqrt{45} \end{aligned}$ Area $\Delta=\frac{1}{2} \sqrt{14}(\sqrt{45})=12.5$	M1A1 DM1 A1 [4] B1 M1A1 [3]	May be seen in part (ii) OR $A B^{2}=45, A O^{2}=14, O B^{2}=59$ Hence $A B^{2}+A O^{2}=O B^{2}$ Hence $O A B=90^{\circ}$ At least one magnitude correct in (i) or (ii) Accept $12.6, \frac{(3 \sqrt{70})}{2}$ oe

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	11

$7 \quad$ (i) (ii)	$\begin{aligned} & S=\frac{a}{1-r}, \quad 3 S=\frac{a}{1-2 r} \\ & 1-r=3-6 r \\ & r=\frac{2}{5} \end{aligned}$ $7+(n-1) d=84$ and/or $7+(3 n-1) d=245$ $[(n-1) d=77,(3 n-1) d=238,2 n d=161]$ $\frac{n-1}{3 n-1}=\frac{77}{238}$ (must be from the correct u_{n} formula) $n=23 \quad\left(d=\frac{77}{22}=3.5\right)$		At least $3 S=\frac{a}{1-2 r}$ Eliminate S At least one of these equations seen Two different seen - unsimplified ok Or other attempt to elim d. E.g. sub $d=\frac{161}{2 n}$ (if n is eliminated d must be found)
8 (i) (ii)	$\operatorname{Arc} A B=4 \alpha$ $\operatorname{Arc} D C=(4 \cos \alpha) \alpha$ $A C($ or $D B)=4-4 \cos \alpha$ Perimeter $=4 \alpha \cos \alpha+4 \alpha+8-8 \cos \alpha$ $O D=4 \cos \frac{\pi}{6}(=2 \sqrt{3})$ Shaded area $=\left[\frac{1}{2} \times 4^{2} \times \frac{\pi}{6}\right]\left[-\frac{1}{2}(2 \sqrt{3})^{2} \times \frac{\pi}{6}\right]$ $\frac{\pi}{3}$		Or $k=\frac{1}{3}$
$9 \quad$ (i) (ii) (iii)	$\begin{aligned} & \mathrm{f}^{\prime}(2)=4-\frac{1}{2}=\frac{7}{2} \rightarrow \text { gradient of normal }=-\frac{2}{7} \\ & y-6=-\frac{2}{7}(x-2) \text { AEF } \end{aligned}$ $\begin{aligned} & f(x)=x^{2}+\frac{2}{x}(+c) \\ & 6=4+1+c \stackrel{y}{\Rightarrow} c=1 \end{aligned}$ $\begin{aligned} & 2 x-\frac{2}{x^{2}}=0 \Rightarrow 2 x^{3}-2=0 \\ & x=1 \end{aligned}$ $\mathrm{f}^{\prime \prime}(x)=2+\frac{4}{x^{3}}$ or any valid method $f^{\prime \prime}(1)=6 \quad \text { OR }>0 \quad \text { hence minimum }$	B1M1 A1 ${ }^{\wedge}$ [3] B1B1 M1A1 [4] M1 A1 M1 A1 [4]	Ft from their $f^{\prime}(2)$ Sub $(2,6)-$ dependent on c being present Put $\mathrm{f}^{\prime}(x)=0$ and attempt to solve Not necessary for last A mark as $x>0$ given Dependent on everything correct

Page 6 Mark Scheme

10 (i) (ii) (iii) (iv)	$\begin{array}{ll} (x-1)^{2}-16 & \\ -16 \\ & \\ 9 \leqslant(x-1)^{2}-16 \leqslant 65 \text { OR } x^{2}-2 x-15=9 \rightarrow 6,-4 \\ 25 \leqslant(x-1)^{2} \leqslant 81 & x^{2}-2 x-15=65 \rightarrow 10,-8 \\ 5 \leqslant x-1 \leqslant 9 & p=6 \\ 6 \leqslant x \leqslant 10 & q=10 \\ & \\ x=(y-1)^{2}-16 & {[\text { interchange } x / y]} \\ y-1=(\pm) \sqrt{x+16} & \\ \mathrm{f}^{-1}(x)=1+\sqrt{x+16} & \end{array}$	B1B1 [2] B1 ${ }^{\wedge}$ [1] M1 M1 A1 A1 [4] M1 M1 A1 [3]	Ft from (i) $\begin{aligned} & \text { OR } x^{2}-2 x-24 \geqslant 0, x^{2}-2 x-80 \leqslant 0 \\ & (x-6)(x+4) \geqslant 0(\mathrm{x}-10)(\mathrm{x}+8) \leqslant 0 \\ & x \geqslant 6 \\ & x \leqslant 10 \end{aligned}$ SC B2, B2 for trial/improvement OR $\begin{aligned} & (x-1)^{2}=y+16 \\ & x=1+(\pm) \sqrt{y+16} \\ & \mathrm{f}^{-1}(x)=1+\sqrt{x+16} \end{aligned}$
11 (i) (ii)	For $y=(4 x+1)^{\frac{1}{2}}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(4 x+1)^{-\frac{1}{2}}\right] \times[4]$ When $x=2$, gradient $m_{1}=\frac{2}{3}$ For $y=\frac{1}{2} x^{2}+1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \rightarrow$ gradient $m_{2}=2$ $\begin{aligned} & \alpha=\tan ^{-1} m_{2}-\tan ^{-1} m_{1} \\ & \alpha=63.43-33.69=29.7 \end{aligned}$ $\begin{aligned} & \int(4 x+1)^{\frac{1}{2}} \mathrm{~d} x=\left[\frac{(4 x+1)^{\frac{3}{2}}}{2 / 3}\right] \div[4] \\ & \int\left(\frac{1}{2} x^{2}+1\right) \mathrm{d} x=\frac{1}{6} x^{3}+x \\ & \int_{0}^{2}(4 x+1)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{6}[27-1], \int_{0}^{2}\left(\frac{1}{2} x^{2}+1\right) \mathrm{d} x=\left[\frac{8}{6}+2\right] \\ & \frac{13}{3}-\frac{10}{3} \end{aligned}$	B1B1 B1 ${ }^{\wedge}$ B1 M1 A1 [6] B1B1 B1 M1 M1 A1 [6]	Ft from their derivative above Apply limits $0 \rightarrow 2$ to at least the $1^{\text {st }}$ integral Subtract the integrals (at some stage)

